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Transmission-Line Properties of’ a Round Wire;
in a Polygon Shield

HAROLD A. WHEELER, FELLOW, IEEE

Abstract—A family of transmission fines is based on a roond wire in a

cyliidricaf shield of polygon cross-section. There is presented a simple
forrmda which gives a smooth transition between the extremes of a smaff

wire and a wire near contact. The same forrmrfa is adapted for different
shapes by entry of different constants depending on the number of shield

planes and the degree of symmetry. Tbe formofa is reversible for synthesis

or analysis by explicit expression of either shape ratio or wave resistance
in terms of the other. For comparison in the transition region, there is

computed for each shape a close approximation by tbe method of images.

I. INTRODUCTION

A FAMILY of simple transmission lines is based on a

round wire in a cylindrical shield of polygon cross-

section. An elementary formula for each shape has long

been available for a wire much smaller than the space in

the shield [1] [4]. The author published in 1950 [1] a set of

curves showing the behavior for a larger wire, approach-

ing contact. That set was based on an orderly transition

between the extremes of a small wire and one near con-

tact. In the meantime, further studies have yielded more

understanding and theoretical tools for formulating the

transition behavior [2] [3] [5] [8]. There is here presented a

general formula which gives remarkably close approxima-

tion to the known behavior in a variety of shapes. This

formula is reversible, in that it yields for synthesis or

analysis a simple explicit solution for either the shape

ratio or the wave resistance in terms of the other.

II. SYMBOLS

MKS rationalized units (meters, ohms, etc.)

R = wave resistance of the transmission line formed

by the wire and the shield (so-called “character-

istic impedance”) with free space as the dielec-

tric.

d = diameter of the wire (inner conductor).

D = diameter of a wire that would contact the shield

(all planes).

h = ~ (D – d) = height of one wire above one plane

(or separation of the wire from every plane).

s = D/ d= diameter ratio (shape ratio).

s = shield ratio by which the effective diameter (for

a small wire) exceeds the contact diameter (D).

n = number of planes forming the shield.

m = exponent in the general formula.

c = 2m/ nz = a constant in the general formula.
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k = dielectric constant of sheet of material separat-

ing the wire from the one plane.

in x = logex.

exp x =ex.

acosh x= anticosh x = cosh– 1 x.

III. A ROUND WIRE IN A POLYGON SHIELD

Fig. 1 illustrates the symbols and dimensions used

herein, with reference to a iingle plane as a one-sided

polygon shield. This is identified as shape (l). The shape

ratio (S= D/d) is increased by the shield ratio (s= 2)

which is a constant in the limit of a large ratio (S>> I)

peculiar to a small wire, The corresponding effective outer

diameter (sD) is shown by a dashed line. The separation

from contact is denoted the height (h) which is here again

used as a reference in the “normalized power factor” [2]

[3].

Any shape of line may be filled with dielectric (k), in

which case its wave resistance (R) is decreased by the

familiar factor (1/ fi ). This is omitted herein.

There is one case of dielectric which is interesting and

may be particularly useful. It is identified as shape (1 k) in

Fig. 1. The round wire is separated from a shield plane by

a sheet of dielectric (k). This may be useful on a printed-

circuit board for reducing the loss as compared with a

printed strip [14].

Here the effective dielectric constant (k’) is formulated

simply:

k’=fi. (Ii)

This rule has been derived for these two extreme cases:

(a) Any shape ratio, with weak dielectric (k – 1< 1).

(b) Any dielectric, with wire near contact (S – 1< 1) [15].

It is taken as a fair approximation for all cases, and may

even have an exact basis without restriction.

Fig. 2 shows the six shapes that are evaluated herein.

The first and last are susceptible of exact evaluation by

known reversible formulas. The intermediate four exem-

plify the need for the general formula here presented,

Each shape is associated with these numbers or values:

(l-6) The identity of the shape of the shield.
(s) The shield ratio [1] [4].

(n) The number of planes forming the polygon shield.

(m) An exponent used in the formula.

(c) A derived constant used in the formula (c=

2m/n2).
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Fig. 1. Dimensions of a round wire near a plane.
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Fig. 2. Cross-section shapes and constants.

Also shown is the increment (AR) by which the shield

ratio increases the wave resistance for a small wire:

AR=601ns. (2)

Each of the shapes of shield may be described as

follows [1]:

(1) One plane (n= 1).

(2) A corner (n = 2).

(3) Parallel planes (n= 2).
(4) Charnel (n= 3).

(5) Square cylinder (n= 4).

(6) Circular cylinder (n= GO).
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Fig. 3. Curves of wave resistance.

The wave resistance (1?) is defined for one wire in such a. .
shield. The corresponding balanced pair (2R ) is also

shown.

Shape (4) is particularly well suited for use as a slotted

line, because the open side can be located at the top for

continuous access. The side walls can be made wide

enough for any degree of shielding. Then the walls pro-

vide a track for the traveling probe. In contrast to shape

(3) commonly used for this purpose, the third wall pre-

vents propagation of the TEM extra mode between the

parallel walls.
In 1945, at the Hazeltine laboratory in Little Neck, a

long slotted line was needed for FM and TV bands. A

length of 12 ft provided a half-wave down to 40 MHz.

One line was built with shape (4), about 3-in wide, the

inner conductor being supported by a thin dielectric fin

above the bottom wall. Another line was built with a

balanced pair of inner conductors in a single trough [1]. It

was equivalent to two single lines side-by-side with the

center partition removed. The balanced magnetic field
was probed by a horizontal loop midway between the

walls. The single line was the predecessor of the shape (3)

slotted lines which came into common use a few years’

later [5].

Fig. 3 shows the wave resistance in the transition range

of shape ratio. This was first published in 1950 [1] in a

similar form, but without a formula. This feature expands

the region near contact. As a further refinement here, the

scale of abscissas is chosen to give a straight line for the

top graph (l). The lower graphs have a lesser slope (1/n)
near the origin but approach the same slope far from the

origin (small wire).
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IV. THE REVERSIBLE GENERAL FORMULA

The general formula is here stated for explicit synthesis

and analysis.

( (exp mR/60- 1)2

}

I/m

S= D/d= 1+ (3)
sm(exp mR/60– 1)+ c

R 60

{[
== in 1+ ~sm(S~–l) 1

+
/[

;sqs-1 }1) 2+c(sm–1) . (4)

The constants (s, m, c) are given in Fig. 2 for each shape.

The top and bottom shapes have known reversible

explicit formulas, to which the general formula simplifies

with the listed constants. The wire near one plane, shape

(l), is based on its elementary form:

S= D/d=cosh R/60; R =60 acosh D/d. (5)

The coaxial circular shape (6) is best expressed in its

elementary form:

S= D/d=exp R/60; R=601n D/d. (6)

The wire in a corner, shape (2), has some peculiarities

which led to the form of the general formula. In Fig. 3, its

R is the average of the top and bottom graphs at both

extremes of shape. One might infer that the average would

be a close approximation in the transition region (though

not exact). Expressing this average leads to the form of

the general formula with the listed constants.

It was perceived that this form could be provided with a

different set of constants, as listed, to give the exact

formulas for the top and bottom extreme shapes.

For any number of planes, the known constants (s, n)

give the correct slopes in Fig. 3 at both extremes of shape.

For a small wire:

R=60 in sD/d; S= D/d= ~ exp R/60. (7)

Near contact:

S= D/d=l+ ~(nR/60)2; R= ~~~ . (8)

There remains a choice of one constant (m, giving c) to

enable the general formula to give closest approximation

in the transition region between the extremes. This choice

for any one shape would be based on whatever knowledge

is available.

For a wire between parallel planes, shape (3), intensive

studies had been made in the meantime [6] [8]. These had

placed R within rather close bounds for all shape ratios

and had yielded close explicit approximations for synthe-

sis and analysis. Considerations of symmetry and the

second approximation for a small wire lead to one choice

of constants (m= 4, c =2) This choice gives a close ap-

proximation to the closest known transition. Also this

result is found to be only weakly dependent on the choice.

Shape

—-

(1) o

(2) ~

(3) 7—

(4) ~

(5) ❑

(6) @

— -- -...

TABLE I
COMPAIUSON

R fOK d/D = 0.95

—..—
Close

.%pprox.

19.382

11.132

10.646

7.886

6,261

3.078
—.

——
General

Formula

19.382

11.230

10.676

7.982

6.303

3.078
s.—.

Relativf

Error

0

+.0088

+.0028

+.0123

+.0067

0

The general formula with these constants contains

719

these

features:

a)

b)

For a small wire, the correct first term, and a second

term which is correct in form (m= 4) and approxi-

mately in amount.

For a wire near contact, the correct first term, and a

second term which appears to track approximately.

For a wire in a square cylinder, shape (5), similar

considerations made it logical to double the exponent

(m=8, c=l).

For a wire in a channel, shape (4), there is a lower order

of symmetry, comparable with shape (3), so the same

exponent is chosen (m= 2, c =4/9).

It is noted that the stated choice of the exponent (m, c)

for each number of planes is that which gives nearly the

least R in the transition region. This corresponds to least

departure from the straight lines having the slopes estab-

lished for both extremes of shape ratio. The result is found

to be only weakly dependent on this choice.
The general formula is seen to be exact for all shape

ratios in the two extreme shapes, while leaving some

amount of uncertainty in the transition region for the

intermediate shapes. For estimating the residual error of

R, each intermediate shape has been computed very

closely for one or more points in the region of most

uncertainty. This computation is based on images in the

shield planes. It is described in the Appendix, which gives

the computed values for testing the general formula.

Table I is a summary of values obtained by close

approximation and by the general formula. For each

shape, the relative error of the formula is near the maxi-

mum for all ratios. It is near one percent for most of the
intermediate shapes. However, it is much less (<0.3 per-

cent) for parallel planes, the case that has received most

attention. [5] [6] [8] The greatest error occurs for rather

low values of R, which are more sensitive to dimensional

tolerances and are seldom used.
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V. THE Loss POWER FACTOR

An earlier paper [2] describes a general method for

computing the magnetic-loss power factor (PF) caused by

the skin effect. That method uses numerical differentia-

tion of wave resistance by increment of dimensions. That

method is equally applicable here. It yields the actual loss

PF and also the normalized loss PF by reference to the

separation (h).

For a pair of wires, the loss PF maybe decreased by the

removal of all or part of the shield, leaving a plane of

symmetry free of loss. To simulate this reduction of loss,

the increment of D is multiplied by the fraction:

no. of remaining shield planes around each wire

basic no. of shield planes around one wire
. (9)

The normalized loss PF of shapes (1) and (3) is graphed

in [2] and [3].

In an earlier paper [7] the author gives a simple rule for

the skin resistance of a polygon shield around a small

wire. It is equal to the resistance of the inscribed circular

shield (like the outer conductor of the simple coaxial line).

VI. CONCLUSION

For the subject family of lines, a simple reversible

formula is available for synthesis or analysis of any shape

ratio between the extremes of a small wire and a wire near

contact.

APpENDIX

CLOSE APPROXIMATION BY IMAGES

The round wire in a polygon shield offers an opportun-

ity for close approximation by the method of images. The

limiting case of a small wire yields a simple reversible

formula based on its images in the plane walls of the

polygon shield. This has long been known [1] [4] [9]. The

approximation has been close enough for practical sizes of

wire not too close to contact with the shield.

For either extreme case of a shield made of one or

many planes, a reversible formula has been known for any

shape ratio out to contact. Among the intermediate

shapes, only the wire between parallel planes (3) has

received intensive analysis [5] [6] [8] and no simple for-

mula for analysis or synthesis has previously emerged.

There are analytic approaches which have general ap-
plication but ade so laborious as to require muck com-

puter capacity.

The method of images can be extended for approximate

computation of a round wire of any shape ratio, even

approaching contact, if the shield planes form one or

more sides of a regular polygon. Not all sides need be

represented. The intermediate shapes here considered

meet this condition. The reference polygon is a square

circumscribed on the outer diameter (D).
The method used here is shown in Fig. 4 for one shape,

a round wire in a corner. A pattern of lines and images is

shown as an example. The same approach has been shown

for parallel planes [6] [8]. Any finite pattern cannot realize

(a)

INNER QUADRANT

“
OF CIRCLE J

o
-. 0 Av “m

Ac=Av/”

m
_—+=t

0
-7 0 A. v.

AC= +wAv

(c)

Fig. 4. Close approximation for a wire in a comer. (a) The pattern of
line images. (b) The graph of potential over flux. (c) The area of
inverse potential times flux.

a locus of constant potential on the wire circle. However,

the image pattern can be designed to reduce the variation

of potential on the circle. The variation can be made small

enough to be accommodated in an averaging process.

The problem is most severe for a wire near contact.

With a single plane, one line and its image can be located

at a conjugate pair of “focal” points to give constant

potential on the plane (zero) and on any given circle near

the plane. For each plane, a similar pair of images is

provided, as shown in Fig. 4(a). This is found to assure

that the potential variation around the circle has a ratio of

variation not much different from unity. In the case

shown, this ratio is less than 4/3. Also it happens that

equal maxima of potential occur at the nearest and fur-

thest points on the diagonal line of symmetry.

Fig. 4(b) shows the variation of potential (u) around the

circle. It is graphed on a scale of flux (o). Naturally the

flux is concentrated in the regions near contact, where the

potential is near minimum.

The concept of capacitance is helpful in summing the

effects around the circle. Any small element of flux (Ao) is

associated with a value of potential (u) to contribute an

element of capacitance (AC= Ao/ u). If the potential and

flux lines depart only slightly from a rectangular grid, the

sum of capacitance from this graph is a close approxima-

tion for the circular wire. This condition is met for a low
graph, as shown. Also it would be met for a high graph,

which would have a much smaller ratio of variation.
Fig. 4(c) shows a graph of inverse potential (t= l/u).

On this graph, an element of area is an element of

capacitance (AC = tAv). This area can be integrated
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numerically to give the capacitance (C), which determines

the wave resistance (R= 377/ C).

This algorithm amounts to averaging around the circle

by a particular rule. It is a refinement of the simple

averaging previously used for parallel planes [6] [8].

Any pattern of images can be relocated to reduce the

variation of potential around the circle. The image point

can be shifted in two dimensions so two conditions can be

met. In Fig. 4, for example, the images can be adjusted to

double the number of ripples between upper and lower

bounds, which places these bounds much closer. For the

shape ratio in Table I, the ratio of the bounds can be

reduced from 1.26 to 1.10, thereby decreasing any uncer-

tainty in the approximation involved in the algorithm.
If the area is integrated in steps around the circle, the

flux increments (Ao) are not uniform. The trapezoid rule

does not require equal increments, so it is suitable for this

purpose. For any one quadrant of the circle, less than 20

steps were required for close approximation in the cases

here reported.

As a convenience for numerical integration and inter-

pretation, the angle around the circle and the flux around

the line images may be expressed in circle units or in

grads (400 = 1 circle).

The computation of potential and flux (u, o) around the

circle is simple for all shapes here considered. This and

the numerical integration are well within the capability of

a programmable personal calculator with printout (such

as the HP-97 used by the author).

In some cases, the images may be located further from

the center of the circle, to realize some advantage. This

was done for parallel planes in order to place the potential

variation within closest bounds [6] [8]. Critical location of

the images offered a great advantage in that case. For an

intermediate range of shape ratio, the averaging over the

circle was placed within rather close bounds.

A second approximation for a small wire can be ob-

tained with images at the center of the circle, the simplest

pattern.

There may be noted, some interesting relationships

among the shapes shown in Fig. 2.

As mentioned, shape (2) is evaluated by the average R

of shapes (1) and (6) at both extremes of the shape ratio.

It is evaluated for any ratio by the image pattern in Fig.

4(a). Table 1, for one ratio, shows the average to differ

from the close approximation by a small relative error

(0.0060). Therefore, the rule is not exact, though helpful.

The error approaches zero toward either extreme of shape

ratio.

Shape (4) is between (3) and (5). Its space can be made

up of one half of the square (5) and one half of the

parallel planes (3). The field lines do not match but the
departure is small enough to make this concept useful.
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The resulting rule is: the R of (4) is the harmonic mearl of

(3) and (5). The error of this rule is only 0.2 Q in the Iilmit

of high R and less for lower 1?, approaching zero relative

error near contact.

If a wire in a square is near contact, as in Table 1, shape

(6), its computation is greatly simplified by taking the

inner quadrant of the circle in Fig. 4(a). The entire circle

has 4 times this C. Otherwise the square would require a

doubly infinite set of images (which could be summecl in

closed form in terms of elliptic functions).

This algorithm for a close approximation has provecl to

be useful for a round wire in a polygon shield. ‘l~e

“focal” location of images is good for all shapes and

ratios, It is simple to locate. Some further refinement is

usually realized by locating the images a little further from

the center of the circle.
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