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Transmission-Line Properties of a Round Wire
in a Polygon Shield

HAROLD A. WHEELER, FELLOW, IEEE

Abstract—A family of transmission lines is based on a round wire in a
cylindrical shield of polygon cress-section. There is presented a simple
formula which gives a smooth transition between the extremes of a small
wire and a wire near contact. The same formula is adapted for different
shapes by entry of different constants depending on the number of shield
planes and the degree of symmetry. The formula is reversible for synthesis
or analysis by explicit expression of either shape ratio or wave resistance
in terms of the other. For comparison in the transition region, there is
computed for each shape a close approximation by the method of images.

I. INTRODUCTION

FAMILY of simple transmission lines is based on a

round wire in a cylindrical shield of polygon cross-
section. An elementary formula for each shape has long
been available for a wire much smaller than the space in
the shield [1] [4]. The author published in 1950 [1] a set of
curves showing the behavior for a larger wire, approach-
ing contact. That set was based on an orderly transition
between the extremes of a small wire and one near con-
tact. In the meantime, further studies have yielded more
understanding and theoretical tools for formulating the
transition behavior [2] [3] [5] [8]. There is here presented a
general formula which gives remarkably close approxima-
tion to the known behavior in a variety of shapes. This
formula is reversible, in that it yields for synthesis or
analysis a simple explicit solution for either the shape
ratio or the wave resistance in terms of the other.

II. SyMBOLs

MKS rationalized units (meters, ohms, etc.)

R =wave resistance of the transmission line formed
by the wire and the shield (so-called “character-
istic impedance”) with free space as the dielec-
tric.

d =diameter of the wire (inner conductor).

D = diameter of a wire that would contact the shield
(all planes).

h =3 (D — d)=height of one wire above one plane
(or separation of the wire from every plane).

N = D /d=diameter ratio (shape ratio).

s =shield ratio by which the effective diameter (for
a small wire) exceeds the contact diameter (D).

n =number of planes forming the shield.

m =exponent in the general formula.

c =2m/n*=a constant in the general formula.
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k =dielectric constant of sheet of material separat-
ing the wire from the one plane.

Inx =log,x.

exp x =e”.

acosh x=anticosh x=cosh™! x.

IIIL.

Fig. 1 illustrates the symbols and dimensions used
herein, with reference to a single plane as a one-sided
polygon shield. This is identified as shape (1). The shape
ratio (S=D/d) is increased by the shield ratio (s=2)
which is a constant in the limit of a large ratio (S>1)
peculiar to a small wire. The corresponding effective outer
diameter (sD) is shown by a dashed line. The separation
from contact is denoted the height (A) which is here again
used as a reference in the “normalized power factor” [2]
[3].

Any shape of line may be filled with dielectric (k), in
which case its wave resistance (R) is decreased by the
familiar factor (1/Vk ). This is omitted herein.

There is one case of dielectric which is interesting and
may be particularly useful. It is identified as shape (1k) in
Fig. 1. The round wire is separated from a shield plane by
a sheet of dielectric (k). This may be useful on a printed-
circuit board for reducing the loss as compared with a
printed strip [14].

Here the effective dielectric constant (k') is formulated
simply:

A ROUND WIRE IN A POLYGON SHIELD

kK=Vk . D
This rule has been derived for these two extreme cases:

(a) Any shape ratio, with weak dielectric (k—1<«1).
(b) Any dielectric, with wire near contact (S — 1<1) [15].

It is taken as a fair approximation for all cases, and may
even have an exact basis without restriction.

Fig. 2 shows the six shapes that are evaluated herein.
The first and last are susceptible of exact evaluation by
known reversible formulas. The intermediate four exem-
plify the need for the general formula here presented.
Each shape is associated with these numbers or values:

(1-6) The identity of the shape of the shield.

(s) The shield ratio [1] {4].

(n) The number of planes forming the polygon shield.
(m)  An exponent used in the formula.

(¢) A derived constant used in the formula (c¢=

2m/n).
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Fig. 1. ‘Dimensions of a round wire near a plane.
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Fig. 2. Cross-section shapes and constants.
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Also shown is the increment (AR) by which the shield
ratio increases the wave resistance for a small wire:

AR=601ns. )

Each of the shapes of shield may be described as
follows [1]:

(1) One plane (n=1).

(2) A corner (n=2).

(3) Parallel planes (n=2).

(4) Channel (n=3).

(5) Square cylinder (n=4).
(6) Circular cylinder (n= c0).
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Fig. 3. Curves of wave resistance.

The wave resistance (R) is defined for one wire in such a
shield. The corresponding balanced pair (2R) is also
shown.

Shape (4) is particularly well suited for use as a slotted
line, because the open side can be located at the top for
continuous access. The side walls can be made wide
enough for any degree of shielding. Then the walls pro-
vide a track for the traveling probe. In contrast to shape
(3) commonly used for this purpose, the third wall pre-
vents propagation of the TEM extra mode between the
parallel walls.

In 1945, at the Hazeltine laboratory in Little Neck, a
long slotted line was needed for FM and TV bands. A
length of 12 ft provided a half-wave down to 40 MHz.
One line was built with shape (4), about 3-in wide, the
inner conductor being supported by a thin dielectric fin
above the bottom wall. Another line was built with a
balanced pair of inner conductors in a single trough [1]. It
was equivalent to two single lines side-by-side with the
center partition removed. The balanced magnetic field
was probed by a horizontal loop midway between the
walls. The single line was the predecessor of the shape (3)
slotted lines which came into common use a few years
later [5].

Fig. 3 shows the wave resistance in the transition range
of shape ratio. This was first published in 1950 [1] in a
similar form, but without a formula. This feature expands
the region near contact. As a further refinement here, the
scale of abscissas is chosen to give a straight line for the
top graph (1). The lower graphs have a lesser slope (1/n)
near the origin but approach the same slope far from the
origin (small wire).
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IV. THE REVERSIBLE GENERAL FORMULA

The general formula is here stated for explicit synthesis
and analysis.
1/m
} 3

(exp mR /60— 1)
s"(exp mR/60—1)+c¢

S=D/d={1+

R=%1n{l+[%s"‘(5‘m——l)}

+\/Hsm(sm—1)]2+c(sm—l) } )

The constants (s,m,c) are given in Fig. 2 for each shape.

The top and bottom shapes have known reversible
explicit formulas, to which the general formula simplifies
with the listed constants. The wire near one plane, shape
(1), is based on its elementary form:

S=D/d=cosh R /60; R=60acosh D/d. (5)

The coaxial circular shape (6) is best expressed in its
elementary form:

S=D/d=exp R/60;

R=60InD/d.  (6)

The wire in a corner, shape (2), has some peculiarities .

which led to the form of the general formula. In Fig. 3, its
R is the average of the top and bottom graphs at both
extremes of shape. One might infer that the average would
be a close approximation in the transition region (though
not exact). Expressing this average leads to the form of
the general formula with the listed constants.

It was perceived that this form could be provided with a
different set of constants, as listed, to give the exact
formulas for the top and bottom extreme shapes.

For any number of planes, the known constants (s,#)
give the correct slopes in Fig. 3 at both extremes of shape.
For a small wire:

R=601nsD/d; S=D/d=%epr/60. @)

Near contact:
- % V2(5-1). (8

There remains a choice of one constant (m, giving ¢) to
enable the general formula to give closest approximation
in the transition region between the extremes. This choice
for any one shape would be based on whatever knowledge
is available.

For a wire between parallel planes, shape (3), intensive
studies had been made in the meantime [6] [8]. These had
placed R within rather close bounds for all shape ratios
and had vyielded cloge explicit approximations for synthe-
sis and analysis. Considerations of symmetry and the
second approximation for a small wire lead to one choice
of constants (m=4, ¢=2) This choice gives a close ap-
proximation to the closest known transition. Also this
result is found to be only weakly dependent on the choice.

S=D/d=1+ %(nR/60)2;
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TABLE1
COMPARISON
Shape ‘R for 4/p = 0;
| Close » General Relative
Approx. Formula Error
(1) o |19.382 19,382 0
(2) [0 | 11.132 | 11.230 | +.0088
(3) E 10.646 10.676 +.,0028
4) E 7.886 7.982 | +.0123
) [o] | 6.261 6.303 | +.0067
(6) @ 3.078 3.078 0

The general formula with these constants contains these
features:

a) For a small wire, the correct first term, and a second
term which is correct in form (m=4) and approxi-
mately in amount.

b) For a wire near contact, the correct first term, and a
second term which appears to track approximately.

For a wire in a square cylinder, shape (5), similar
considerations made it logical to double the exponent
(m=38,c=1).

For a wire in a channel, shape (4), there is a lower order
of symmetry, comparable with shape (3), so the same
exponent is chosen (m=2, c=4/9).

It is noted that the stated choice of the exponent (m,c)
for each number of planes is that which gives nearly the
least R in the transition region. This corresponds to least
departure from the straight lines having the slopes estab-
lished for both extremes of shape ratio. The result is found
to be only weakly dependent on this choice.

The general formula is seen to be exact for all shape
ratios in the two extreme shapes, while leaving some
amount of uncertainty in the transition region for the
intermediate shapes. For estimating the residual error of
R, each intermediate shape has been computed very
closely for one or more points in the region of most
uncertainty. This computation is based on images in the
shield planes. It is described in the Appendix, which gives
the computed values for testing the general formula.

Table I is a summary of values obtained by close
approximation and by the general formula. For each
shape, the relative error of the formula is near the maxi-
mum for all ratios. It is near one percent for most of the
intermediate shapes. However, it is much less (< 0.3 per-
cent) for parallel planes, the case that has received miost
attention. [5] [6] [8] The greatest error occurs for rather
low values of R, which are more sensitive to dimensional
tolerances and are seldom used.
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V. Tae Loss Power FACTOR

An earlier paper [2] describes a general method for
computing the magnetic-loss power factor (PF) caused by
the skin effect. That method uses numerical differentia-
tion of wave resistance by increment of dimensions. That
method is equally applicable here. It yields the actual loss
PF and also the normalized loss PF by reference to the
separation (A).

For a pair of wires, the loss PF may be decreased by the
removal of all or part of the shield, leaving a plane of
symmetry free of loss. To simulate this reduction of loss,
the increment of D is multiplied by the fraction:

no. of remaining shield planes around each wire
basic no. of shield planes around one wire

. (9)

The normalized loss PF of shapes (1) and (3) is graphed
in [2] and [3].

In an earlier paper [7] the author gives a simple rule for
the skin resistance of a polygon shield around a small
wire. It is equal to the resistance of the inscribed circular
shield (like the outer conductor of the simple coaxial line).

V1. CoNCLUSION

For the subject family of lines, a simple reversible
formula is available for synthesis or analysis of any shape
ratio between the extremes of a small wire and a wire near
contact.

APPENDIX
CLOSE APPROXIMATION BY IMAGES

The round wire in a polygon shield offers an opportun-
ity for close approximation by the method of images. The
limiting case of a small wire yields a simple reversible
formula based on its images in the plane walls of the
polygon shield. This has long been known [1] [4] [9]. The
approximation has been close enough for practical sizes of
wire not too close to contact with the shield.

For either extreme case of a shield made of one or
many planes, a reversible formula has been known for any
shape ratio out to contact. Among the intermediate
shapes, only the wire between parallel planes (3) has
received intensive analysis [5] {6] [8] and no simple for-
mula for analysis or synthesis has previously emerged.

There are analytic approaches which have general ap-
plication but are so laborious as to require much com-
puter capacity.

The method of images can be extended for approximate
computation of a round wire of any shape ratio, even
approaching contact, if the shield planes form one or
more sides of a regular polygon. Not all sides need be
represented. The intermediate shapes here considered
meet this condition. The reference polygon is a square
circumscribed on the outer diameter (D).

The method used here is shown in Fig. 4 for one shape,
a round wire in a corner. A pattern of lines and images is
shown as an example. The same approach has been shown
for parallel planes [6] [8]. Any finite pattern cannot realize
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Fig. 4. Close approximation for a wire in a corner. (a) The pattern of
line images. (b) The graph of potential over flux. (¢) The area of
inverse potential times flux.

a locus of constant potential on the wire circle. However,
the image pattern can be designed to reduce the variation
of potential on the circle. The variation can be made small
enough to be accommodated in an averaging process.

The problem is most severe for a wire near contact.
With a single plane, one line and its image can be located
at a conjugate pair of “focal” points to give constant
potential on the plane (zero) and on any given circle near
the plane. For each plane, a similar pair of images is
provided, as shown in Fig. 4(a). This is found to assure
that the potential variation around the circle has a ratio of
variation not much different from unity. In the case
shown, this ratio is less than 4/3. Also it happens that
equal maxima of potential occur at the nearest and fur-
thest points on the diagonal line of symmetry.

Fig. 4(b) shows the variation of potential (u) around the
circle. It is graphed on a scale of flux (v). Naturally the
flux is concentrated in the regions near contact, where the
potential 1s near minimum.

The concept of capacitance is helpful in summing the
effects around the circle. Any small element of flux (Av) is
associated with a value of potential (#) to contribute an
element of capacitance (AC=Av/u). If the potential and
flux lines depart only slightly from a rectangular grid, the
sum of capacitance from this graph is a close approxima-
tion for the circular wire. This condition is met for a low
graph, as shown. Also it would be met for a high graph,
which would have a much smaller ratio of variation.

Fig. 4(c) shows a graph of inverse potential (¢1=1/u).
On this graph, an element of area is an element of
capacitance (AC=1rAv). This area can be integrated
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numerically to give the capacitance (C), which determines
the wave resistance (R=377/C).

This algorithm amounts to averaging around the circle
by a particular rule. It is a refinement of the simple
averaging previously used for parallel planes [6] [8].

Any pattern of images can be relocated to reduce the
variation of potential around the circle. The image point
can be shifted in two dimensions so two conditions can be
met. In Fig. 4, for example, the images can be adjusted to
double the number of ripples between upper and lower
bounds, which places these bounds much closer. For the
shape ratio in Table I, the ratio of the bounds can be
reduced from 1.26 to 1.10, thereby decreasing any uncer-
tainty in the approximation involved in the algorithm.

If the area is integrated in steps around the circle, the
flux increments (Av) are not uniform. The trapezoid rule
does not require equal increments, so it is suitable for this
purpose. For any one quadrant of the circle, less than 20
steps were required for close approximation in the cases
here reported.

As a convenience for numerical integration and inter-
pretation, the angle around the circle and the flux around
the line images may be expressed in circle units or in
grads (400=1 circle).

The computation of potential and flux (u,v) around the
circle is simple for all shapes here considered. This and
the numerical integration are well within the capability of
a programmable personal calculator with printout (such
as the HP-97 used by the author).

In some cases, the images may be located further from
the center of the circle, to realize some advantage. This
was done for parallel planes in order to place the potential
variation within closest bounds [6] [8]. Critical location of
the images offered a great advantage in that case. For an
intermediate range of shape ratio, the averaging over the
circle was placed within rather close bounds.

A second approximation for a small wire can be ob-
tained with images at the center of the circle, the simplest
pattern.

There may be noted, some interesting relationships
among the shapes shown in Fig. 2.

As mentioned, shape (2) is evaluated by the average R
of shapes (1) and (6) at both extremes of the shape ratio.
It is evaluated for any ratio by the image pattern in Fig.
4(a). Table I, for one ratio, shows the average to differ
from the close approximation by a small relative error
(0.0060). Therefore, the rule is not exact, though helpful.
The error approaches zero toward either extreme of shape
ratio.

Shape (4) is between (3) and (5). Its space can be made
up of one half of the square (5) and one half of the
parallel planes (3). The field lines do not match but the
departure is small enough to make this concept useful.
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The resulting rule is: the R of (4) is the harmonic mean of
(3) and (5). The error of this rule is only 0.2 & in the limit
of high R and less for lower R, approaching zero relative
error near contact.

If a wire in a square is near contact, as in Table I, shape
(6), its computation is greatly simplified by taking the
inner quadrant of the circle in Fig. 4(a). The entire circle
has 4 times this C. Otherwise the square would require a
doubly infinite set of images (which could be summed in
closed form in terms of elliptic functions).

This algorithm for a close approximation has proved to
be useful for a round wire in a polygon shield. The
“focal” location of images is good for all shapes and
ratios, It is simple to locate. Some further refinement is
usually realized by locating the images a little further from
the center of the circle.
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